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1. INTRODUCTION 

Given their exceptional oxidation resistance in high-temperature steam environments [1-2], SiC and 
FeCrAl alloys are leading candidates to replace Zr-based alloys in current light water reactors (LWRs) as 
accident tolerant fuel cladding. The goal of this study is to perform a sensitive examination of swelling 
and irradiation creep behavior of SiC and FeCrAl materials. These parameters are important material 
properties that dictate the stress and deformation behavior of the integral fuel pin. The viability of these 
cladding concepts to replace Zr-based alloys is contingent on their satisfactory performance under in-pile 
conditions as nuclear fuel cladding. The first steps to assess their viability, is to carry out detailed thermo-
mechanical analysis of these structures as nuclear fuel cladding using fuel performance analysis tools. 
Therefore, it is essential to develop an accurate understanding of swelling and creep behavior of these 
materials through well-controlled experiments and use them as informed inputs into these fuel 
performance analysis tools.  
  
Irradiation may result in swelling or enhance creep in materials among numerous other effects [3]. 
Irradiation swelling strictly refers to an isotropic volume increase in an unstressed material caused by the 
formation of irradiation-induce defects, resulting from the agglomeration of point defects and gas atoms 
inside the material. Irradiation Creep refers to a slow deformation at constant volume, in a material that is 
subjected to a stress below the yield stress; the role of irradiation is to accelerate creep mechanisms that 
occur outside irradiation. From an engineering perspective, the strict definition of irradiation creep refers 
to the observed difference in deformation from the material under stress with and without irradiation. The 
total deformation strain of the material under stress in the in-pile conditions is the sum of strains due to 
linear swelling, thermal creep, and irradiation creep, Eq. (1).  
  

𝜀"#"$% = 𝜀'()%%*+, + 𝜀".)/0$%	2/))3 + 𝜀*//$4*$"*#+	2/))3 (1) 
 
Swelling behavior of SiC has been studied extensively with comprehensive references available in the 
literature [4-5]. Thermal creep rate of SiC is insignificant at temperatures below 1400°C and can be 
ignored for LWR fuel cladding application [6]. Irradiation creep of SiC has received some attention and is 
undergoing continued investigation [7].  
 
Swelling behavior of ferritic steels has received ample attention in the past and is known to be negligible 
in the dose range applicable to LWR fuel cladding [8]. Thermal creep is a strong function of alloy 
composition and microstructure and has received very limited attention in case of FeCrAl alloys in the 
temperature range of interest for LWR fuel cladding (300-400°C) [9]. Finally, irradiation creep has 
received some attention with rough estimates available for bcc metals in the literature [8].  
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2. EXPERIMENT DESCRIPTION 

This experiment involves in-pile creep testing of ATF FeCrAl and SiC specimens, with the aim of 
providing reliable in-pile data on creep compliance coefficient of these materials as a function of dose and 
temperature.  Such data will be supportive of the qualification datapackage necessary for the eventual 
application of FeCrAl or SiC as a lead test rod (LTR) in a commercial LWR.  
 
Only a limited temperature is probed that is directly applicable to the temperature of LWR fuel cladding 
under normal operating conditions. For FeCrAl alloys the test temperature was fixed at 350°C. In case of 
SiC, in order to exaggerate the swelling, the test temperature was kept constant at 300°C. The creep tests 
take advantage of in-pile instrumentation and control systems native to the Halden facility to collect 
accurate in-pile data with reliable environmental controls. Detailed description of this test rig is provided 
elsewhere [10], but briefly, they utilize adjustable mixture gas flow in annular regions of the capsule, 
coupled with multiple thermocouples in each capsule for precise temperature control along the length of 
the specimen. The stress on the creep specimens is controlled by direct gas pressure control inside a 
bellow attached to the creep specimen that is gripped at the other end. The creep strain is measured 
directly using a calibrated linear variable differential transformer (LVDT) that is in contact with the end 
of the specimen. Figure 1 shows a schematic of the in-pile creep test rig.  

 

 
 

Fig. 1. Schematic of instrumented in-pile creep test rig from ref. [10].  
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2.1 TEST MATERIALS 

Two SiC specimens machined from high-purity chemical vapor deposited (CVD) SiC were examined in 
this study. The CVD variant, of purity >99.999%, was purchased from Dow Chemical Co. (Marlborough, 
MA). Also, three FeCrAl specimens from two distinct alloys were examined. The FeCrAl alloys were 
produced at ORNL and they were designated as C35M2 and C35MN5. The composition of the alloys is 
provided in Table 1. C35M2 alloy was hot-forged at 650°C with 75% area reduction (36mm diameter 
round bar to 16 mm square bar), followed by annealing at 650°C for 1h. Microstructure of this alloy 
consisted of deformed (elongated) grains. Note that the final annealing was applied to stabilize fine sub-
grain (SG) structure, with ~1-5 µm size inside of the elongated grains. C35MN5 alloy was hot-extruded at 
800°C with 88% area reduction (2.9” diameter to 1.0” diameter), followed by annealing at 800°C for 1h. 
Microstructure consists of highly deformed (elongated) grains, which shows a dense dispersion of Nb-rich 
second-phase precipitates. Extensive detail on processing and properties of these alloys is provided 
elsewhere [11]. 
 

Table 1. Analyzed chemistry of the ORNL ATF FeCrAl alloys studied 

Heat 
Analyzed composition [wt%] 
Fe Cr Al Mo Si Nb Y C N O S 

C35M2 79.67 13.06 5.15 1.97 0.12 - 0.010 0.004 0.0021 0.0017 0.0015 
C35MN5 78.68 13.02 5.08 1.99 0.21 0.97 0.032 0.003 0.0013 0.0028 0.0003 

 
 

2.2 TEST CONDITIONS 

Tensile specimens from the materials described were produced for this test. The exact drawings for the 
FeCrAl and SiC tensile specimens are provided at the end of this document as appendices. The specimens 
were tested in the stress-free and stressed conditions to determine the swelling-induced deformation only, 
as well as the swelling and creep-induced deformations combined. Note that a small stress (~5MPa) was 
applied under the stress-free conditions to ensure the specimen is in good contact with the LVDT. The test 
conditions are described in Table 2. Note that the stress on the SiC specimen was and remains maintained 
at 100 MPa. However the stress level on the FeCrAl specimens is varied over time to determine the creep 
rate as a function of stress. Also, since thermal creep may not be ignored for FeCrAl alloys, a separate 
series of out-of-pile creep tests at the exact temperature and stress levels were carried out at ORNL. In 
this manner the magnitude of thermal creep could be determined separately. The starting stress for 
FeCrAl alloys was set at a high value of 325 MPa that is just below the yield stress of these alloys at 
350°C. This stress is representative of a value that is expected to develop in the thin cladding under fuel 
pin operation, particularly upon fuel-pellet contact.     
 

Table 2. In-pile creep test parameters. 

Specimen Temperature [°C] Stress [MPa] 
C35MN5C-1 350 325 300 250 200 100 350 325 

C35M2-1 350 325 300 250 200 100 350 325 
C35M2-2 350 0 

SiC-1 300 100 

SiC-2 300 0 
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2.3 DPA RATE DURING IN-PILE TEST 

Since irradiation creep is directly proportional to the damage induced in the material as a result of neutron 
fluence, it is essential to perform accurate calculation of damage production rate in these materials. This is 
particularly important when the results from the tests in a research reactor are to be compared with results 
from other research reactors or applied to predict the material behavior in commercial reactors. In order to 
perform dpa calculations, flux spectrum (flux per unit energy, 𝜑,[𝐸]) that is experienced by the specimen 
is necessary. The total flux, 𝜙, is the sum of the flux in each energy group. Flux spectra for HFIR (in the 
flux trap target (FTT) peripheral target position (PTP) at the midplane location) and Halden (IFA-744 rig 
at the location of creep capsules), are shown in Figure 2 and 3, where the former is normalized per unit 
lethargy. The total flux for the HFIR and Halden positions is 4.46×1015 and 1.20×1014 n/cm2-s, 
respectively. However, the spectra differ significantly, as shown in Fig. 2 where fast flux is roughly two 
orders of magnitude larger in HFIR.  

 
Fig. 2. Neutron flux spectra per unit lethargy in Halden IFA-744 test rig and HFIR PTP position 

(HFIR in blue). 

 
The goal is to calculate the dpa (displacement per atom) rate in the materials of interest. The dap rate can 
be calculated as:  
 

𝑑 = 𝜑, 𝐸 𝜎4(𝐸)𝑑𝐸  (2) 
 
where 𝜎4 is the displacement cross section. The displacement cross section for SiC [12] and pure Fe [13] 
are shown in Fig. 4.  Also shown is the dpa cross section for Fe-13Cr-5Al alloy, calculated simply by 
weighing in the mole fraction of Cr and Al in the alloy and accounting for their dpa cross section from the 
same reference as for pure Fe. Note that the dpa cross section for the alloy was binned differently than 
that of pure Fe (larger energy bins) and appears smoother than the Fe dpa cross section.  
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The calculation in Eq. (2) was carried out using numerical methods and the dpa rate for these materials in 
Halden’s IFA 744 and HFIR’s FTT-PTP was estimated. The results are tabulated in Table 3. These results 
were also compared with the output from the SPECTER code [14] and they were in good agreement.  
 

 
Fig 3. Neutron flux spectra in Halden IFA-744 test rig and HFIR PTP position. 

 
 

 
Fig. 4. dpa cross sections in barns for SiC, Fe, and Fe-13Cr-5Al as a function of neutron energy in MeV. 

The cross sections for Fe and FeCrAl are based on the NRT approach.  
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Table 3. dpa rate in SiC and Fe in HFIR and Halden calculated using various dpa cross sections 

 
dpa/s dpa/HFIR1 Cycle dpa/month dpa/1000h dpa/EFPY 

CVD-SiC - dpa cross section from [12] 
Halden IFA 744 3.59E-09  0.009 0.013 0.113 
HFIR FTT-PTP 7.59E-07 1.57 1.97 2.73 23.84 

Pure Fe – NRT2 
Halden IFA 744 4.94E-09  0.013 0.018 0.155 
HFIR FTT-PTP 9.53E-07 1.98 2.47 3.43 29.94 

FeCrAl – NRT2 
Halden IFA 744 4.63E-09  0.012 0.017 0.145 
HFIR FTT-PTP 1.05E-06 2.18 2.72 3.78 32.99 

1HFIR cycle of 24 days is assumed.  
2NRT à Norget-Robinson-Torrens [15].  
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3. RESULTS 

3.1 IN-PILE CREEP OF SiC 

Figure 5 shows the results from in-pile measurement of displacement in SiC specimens along with the 
exact levels of applied stress and continuous measurement of temperature. The figure plots the high-
quality displacement dataset as function of dose. A clear and significant departure in strain rate between 
the two samples is observed upon application of 100 MPa of stress on one of the specimens. Figure 6 
compares the swelling and creep strain experienced by these specimens with discrete swelling strain data 
from specimens irradiated in HFIR where the two appear to be in good agreement.  
  
 

 
Fig. 5. Temperature, stress, and displacement as a function of neutron dose applied and experienced by 

SiC specimens. 

As the described in Eq. (3), The difference in the instantaneous strain rate of stressed and stress-free SiC 
specimens, normalized per unit stress, is the instantaneous irradiation creep compliance of SiC.  
 

𝜀*//$4*$"*#+	2/))3 =
>?@AB??BCD>?EBFFGHI

J
  (3) 

 
The irradiation creep compliance is plotted as function of neutron dose in Fig. 7 and it appears to follow 
logarithmic creep behavior within this dose range. It is also compared with irradiation creep compliance 
data from bend stress relaxation (BSR) tests in HFIR [7]. The creep compliance measured here appears 
significantly larger than the prior HFIR results. The reason for this difference is not yet fully understood 
and may be partially due to the different grain boundary type and distribution between the two specimens 
used in these two separate tests. The large difference in the dose rate between these two irradiation 
experiments may also play an important role to result in this discrepancy.   
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Fig. 6. Swelling and creep strain of SiC samples in the Halden experiment compared with swelling data 

from HFIR specimens from ref [16]. 

 

 
Fig. 7. Instantaneous irradiation creep compliance of SiC measured in Halden at 300°C and compared 

with results from HFIR tests from ref. [7]. 
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3.2 OUT-OF-PILE CREEP OF FeCrAl  

Out-of-pile creep tests were performed on unirradiated FeCrAl specimens from the same exact batch of 
materials that was tested in Halden in irradiation creep capsules. The purpose of the out-of-pile tests was 
to separately determine the thermal creep rate in these alloys to then be able to distinguish all the distinct 
terms on the right-hand-side of Eq. (1). The tests were conducted at 350°C in an inert atmosphere on the 
C35M2 and C35MN5C alloys. The out-of-pile creep strain as a function of time is plotted in Figure 8. 
The thermal creep rate measured here for these alloys appears to be significantly (2-3 orders of 
magnitude) larger than the limited set of data reported in the literature for FeCrAl alloys at higher 
temperatures [9].   
 

 
Fig. 8. Out-of-pile creep strain as a function of time on FeCrAl alloys. 

 

3.3 IN-PILE CREEP OF FeCrAl 

Figure 9 shows the results from in-pile measurement of displacement in FeCrAl specimens along with the 
exact levels of applied stress and continuous measurement of temperature. The figure plots the 
displacement dataset as function of dose. A clear and significant departure in strain rate between the 
stressed and stress-free C35M samples is observed upon application of 325 MPa of stress on one of the 
specimens. In fact, within the dose range experienced by the C35M alloy, no swelling strain can be 
discerned in the stress-free sample. This is consistent with what is expected in ferritic alloys within this 
dose regime and up to at least a few tens of dpa (beyond what is expected within their lifetime as LWR 
fuel cladding) [8].  The displacement data for C35MN specimen appears unreliable and may hint at sensor 
failure during the test. Therefore, further analysis of the displacement data for this alloy is neglected.  
 
Table 4 provides a comparison between the in-pile and out-of-pile creep strain rate experienced by these 
specimens. The out-of-pile and in-pile data are in very good agreement for the C35M alloy. This is 
indicative of the small relative magnitude of irradiation creep when compared with the thermal creep rate 
in this alloy. This is consistent with the estimates in the literature where irradiation creep in bcc metals is 
on the order of 0.5×10-6 MPa-1dpa-1 [8]. 
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Fig. 9. Temperature, stress, and displacement as a function of neutron dose applied and experienced by 

FeCrAl specimens. 

 
 
 

Table 4. In-pile and out-of-pile creep strain rate experienced by FeCrAl specimens 

Alloy Stress [MPa] Dose [dpa] Creep strain rate [h-1] 

C35M 

325 0 2.9×10-6 
300 0 1.2×10-6 

325 
0.007 2.4×10-6 
0.012 3.7×10-6 
0.030 1.6×10-6 

C35MN 
325 0 3.4×10-6 
300 0 1.0×10-6 
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4. SUMMARY AND OUTLOOK 

A set of in-pile creep tests is ongoing in the Halden reactor on ORNL’s candidate accident tolerant fuel 
cladding materials. These tests are meant to provide essential material property information that is needed 
for an informed analysis of these fuel concepts under normal operating conditions. These tests provide 
detailed information regarding swelling, thermal creep, and irradiation creep rates of these materials. The 
results to date have been compared with the limited set of information available in literature that is form 
irradiation tests in other reactors or out-of-pile tests. Most of the results are in good agreement with prior 
literature, except for irradiation creep rate of SiC. To elucidate the difference between the HFIR and 
Halden test results continued testing is necessary. The tests describe in this progress report are ongoing 
and will continue for at least another year.   
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Appendix A: Engineering Drawing of SiC Tensile Specimen for In-pile Creep Test 
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Appendix B: Engineering Drawing of FeCrAl Tensile Specimen for In-pile Creep Test 
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